$rank(聚合)
定义
新版本5.0.
返回文档位置(称为排名)相对于$setWindowFields
阶段的分区。
在sortBy字段值中,$setWindowFields
阶段确定文档的排名。当与$rank
运算符一起使用时,sortBy
只能将其值设置为单个字段。有关MongoDB如何比较不同类型的字段的更多信息,请参阅BSON比较顺序。
如果有多个文档占据相同的排名,$rank
将具有后续值的文档放置在带有间隔的排名中(请参阅行为)。
$rank
仅在$setWindowFields
阶段可用。
$rank
语法
{ $rank: { } }
$rank
不接受任何参数。
行为
$rank
和$denseRank
在如何对重复的sortBy字段值进行排名方面有所不同。例如,当sortBy
字段值为7, 9, 9, 和10时$denseRank
将值排名为1, 2, 2, 和3。重复的9值具有排名2,而10具有排名3。排名之间没有间隔。$rank
将值排名为1, 2, 2, 和4。重复的9值具有排名2,而10具有排名4。排名3处存在间隔。
具有sortBy字段值为
null
的文档或缺少sortBy字段的文档将根据BSON比较顺序分配排名。请参阅包含重复值、空值或缺失数据的排名分区示例。从MongoDB 8.0版本开始,在
$denseRank
和$rank
的sortBy操作中,对null
和缺失的字段值进行相同的处理。这一变更使得denseRank
和rank
的行为与$sort
操作保持一致。
示例
创建一个包含加利福尼亚(CA
)和华盛顿(WA
)州蛋糕销售的cakeSales
集合
db.cakeSales.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 } ] )
按整数字段对分区进行排名
本例使用$rank
在$setWindowFields
阶段中,输出每个state
的蛋糕销售的quantity
排名。
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { quantity: -1 }, output: { rankQuantityForState: { $rank: {} } } } } ] )
在示例中
partitionBy: "$state"
分区集合中的文档,按state
进行分区。有CA
和WA
的分区。sortBy: { quantity: -1 }
排序每个分区的文档,按quantity
降序(-1
),因此最高的quantity
排在第一位。
output
将rankQuantityForState
字段设置为使用$rank
的quantity
排名,如下所示的结果。
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "rankQuantityForState" : 1 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "rankQuantityForState" : 2 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "rankQuantityForState" : 3 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "rankQuantityForState" : 1 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "rankQuantityForState" : 2 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "rankQuantityForState" : 3 }
按日期字段对分区进行排序
此示例展示了如何在$rank
中与$setWindowFields
阶段一起使用日期,以输出每个state的蛋糕销售的orderDate排名。
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { orderDate: 1 }, output: { rankOrderDateForState: { $rank: {} } } } } ] )
在示例中
partitionBy: "$state"
分区集合中的文档,按state
进行分区。有CA
和WA
的分区。sortBy: { orderDate: 1 }
排序每个分区内的文档,按orderDate
升序(1
),因此最早的orderDate
排在第一位。
output
使用$rank
将rankOrderDateForState
字段设置为orderDate
排名,如下所示的结果。
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "rankOrderDateForState" : 1 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "rankOrderDateForState" : 2 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "rankOrderDateForState" : 3 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "rankOrderDateForState" : 1 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "rankOrderDateForState" : 2 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "rankOrderDateForState" : 3 }
包含重复值、空值或缺失数据的分区排名
创建一个cakeSalesWithDuplicates
集合,其中
蛋糕销售发生在加利福尼亚州(
CA
)和华盛顿州(WA
)。文档6到8的
quantity
和state
与文档5相同。文档9的
quantity
和state
与文档4相同。文档10的
quantity
是空值。文档11缺少
quantity
。
db.cakeSalesWithDuplicates.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 }, { _id: 6, type: "strawberry", orderDate: new Date("2020-01-08T06:12:03Z"), state: "WA", price: 41, quantity: 134 }, { _id: 7, type: "strawberry", orderDate: new Date("2020-01-01T06:12:03Z"), state: "WA", price: 34, quantity: 134 }, { _id: 8, type: "strawberry", orderDate: new Date("2020-01-02T06:12:03Z"), state: "WA", price: 40, quantity: 134 }, { _id: 9, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"), state: "CA", price: 39, quantity: 162 }, { _id: 10, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"), state: "CA", price: 39, quantity: null }, { _id: 11, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"), state: "CA", price: 39 } ] )
本例在$rank
阶段使用$setWindowFields
,以输出每个state的来自cakeSalesWithDuplicates集合的quantity排名。
db.cakeSalesWithDuplicates.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { quantity: -1 }, output: { rankQuantityForState: { $rank: {} } } } } ] )
在示例中
partitionBy: "$state"
分区集合中的文档,按state
进行分区。有CA
和WA
的分区。sortBy: { quantity: -1 }
排序每个分区的文档,按quantity
降序(-1
),因此最高的quantity
排在第一位。
output
使用$rank
将rankOrderDateForState字段设置为quantity排名。
以下示例输出
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "rankQuantityForState" : 1 } { "_id" : 9, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"), "state" : "CA", "price" : 39, "quantity" : 162, "rankQuantityForState" : 1 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "rankQuantityForState" : 3 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "rankQuantityForState" : 4 } { "_id" : 10, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"), "state" : "CA", "price" : 39, "quantity" : null, "rankQuantityForState" : 5 } { "_id" : 11, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"), "state" : "CA", "price" : 39, "rankQuantityForState" : 5 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "rankQuantityForState" : 1 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "rankQuantityForState" : 2 } { "_id" : 6, "type" : "strawberry", "orderDate" : ISODate("2020-01-08T06:12:03Z"), "state" : "WA", "price" : 41, "quantity" : 134, "rankQuantityForState" : 2 } { "_id" : 7, "type" : "strawberry", "orderDate" : ISODate("2020-01-01T06:12:03Z"), "state" : "WA", "price" : 34, "quantity" : 134, "rankQuantityForState" : 2 } { "_id" : 8, "type" : "strawberry", "orderDate" : ISODate("2020-01-02T06:12:03Z"), "state" : "WA", "price" : 40, "quantity" : 134, "rankQuantityForState" : 2 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "rankQuantityForState" : 6 }