$denseRank (聚合)
定义
新版本5.0.
返回文档位置(称为排名)相对于$setWindowFields 阶段 分区。
$setWindowFields 阶段的 sortBy 字段值确定文档排名。有关MongoDB如何比较不同类型的字段的信息,请参阅 BSON比较顺序。
如果多个文档占据相同的排名,$denseRank 将具有后续值的文档放置在下一个排名,而不留空隙(请参阅 行为)。
$denseRank 只在 $setWindowFields 阶段中可用。
$denseRank 语法
{ $denseRank: { } }
$denseRank 不接受任何参数。
行为
$rank和$denseRank在对重复的 sortBy 字段值进行排名时的方法不同。例如,当 sortBy 字段值为 7, 9, 9, 和 10 时$denseRank将这些值排名为 1, 2, 2, 和 3。重复的 9 值排名为 2,而 10 的排名为 3。排名之间没有间隔。$rank将这些值排名为 1, 2, 2, 和 4。重复的 9 值排名为 2,而 10 的排名为 4。排名 3 处有间隔。
对于具有 sortBy 字段
null值或缺少 sortBy 字段的文档,根据 BSON 比较顺序 分配排名。请参阅 包含重复值、空值或缺失数据的排名分区示例。从 MongoDB 8.0 开始,
null和缺失的字段值在$denseRank和$rank的 sortBy 操作中计算排名时被同等对待。此更改使denseRank和rank的行为与$sort保持一致。
请参阅 重复、空和缺失值的密集排名。
示例
整数域下的稠密秩分区
创建一个包含加利福尼亚州(CA)和华盛顿州(WA)的糕点销售的cakeSales集合
db.cakeSales.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 } ] )
此示例使用$denseRank在$setWindowFields阶段中输出每个state的糕点销售的quantity稠密秩
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { quantity: -1 }, output: { denseRankQuantityForState: { $denseRank: {} } } } } ] )
在示例中
partitionBy: "$state"分区了集合中的文档,按state进行分区。有CA和WA的分区。sortBy: { quantity: -1 }排序了每个分区中的文档,按quantity降序(-1),因此最高的quantity排在第一位。
output将denseRankOrderDateForState字段设置为使用$denseRank的orderDate稠密秩,如下所示的结果。
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "denseRankQuantityForState" : 1 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "denseRankQuantityForState" : 2 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "denseRankQuantityForState" : 3 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "denseRankQuantityForState" : 1 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "denseRankQuantityForState" : 2 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "denseRankQuantityForState" : 3 }
按日期字段进行密集排名分区
本例展示了如何使用日期与 $denseRank 在 $setWindowFields 阶段来输出每个 state 的蛋糕销售额的 orderDate 密集排名。
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { orderDate: 1 }, output: { denseRankOrderDateForState: { $denseRank: {} } } } } ] )
在示例中
partitionBy: "$state"分区了集合中的文档,按state进行分区。有CA和WA的分区。sortBy: { orderDate: 1 }排序 每个分区的文档,按orderDate顺序(1),因此最早的orderDate是第一个。
output使用$denseRank将denseRankOrderDateForState字段设置为orderDate排名,如下所示的结果。
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "denseRankOrderDateForState" : 1 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "denseRankOrderDateForState" : 2 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "denseRankOrderDateForState" : 3 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "denseRankOrderDateForState" : 1 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "denseRankOrderDateForState" : 2 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "denseRankOrderDateForState" : 3 }
重复、空和缺失值的密集排名
创建一个 cakeSalesWithDuplicates 集合,其中
蛋糕销售位于加利福尼亚州(
CA)和华盛顿州(WA)。第 6 到 8 份文档与第 5 份文档具有相同的
quantity和state。第 9 份文档与第 4 份文档具有相同的
quantity和state。第 10 份文档的
quantity为null。第 11 份文档缺失
quantity。
db.cakeSalesWithDuplicates.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 }, { _id: 6, type: "strawberry", orderDate: new Date("2020-01-08T06:12:03Z"), state: "WA", price: 41, quantity: 134 }, { _id: 7, type: "strawberry", orderDate: new Date("2020-01-01T06:12:03Z"), state: "WA", price: 34, quantity: 134 }, { _id: 8, type: "strawberry", orderDate: new Date("2020-01-02T06:12:03Z"), state: "WA", price: 40, quantity: 134 }, { _id: 9, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"), state: "CA", price: 39, quantity: 162 }, { _id: 10, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"), state: "CA", price: 39, quantity: null }, { _id: 11, type: "strawberry", orderDate: new Date("2020-05-11T16:09:01Z"), state: "CA", price: 39 } ] )
此示例使用 $denseRank 在 $setWindowFields 阶段,输出来自 cakeSalesWithDuplicates 集合的每个 state 的 quantity 密集排名。
db.cakeSalesWithDuplicates.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { quantity: -1 }, output: { denseRankQuantityForState: { $denseRank: {} } } } } ] )
在示例中
partitionBy: "$state"分区了集合中的文档,按state进行分区。有CA和WA的分区。sortBy: { quantity: -1 }排序了每个分区中的文档,按quantity降序(-1),因此最高的quantity排在第一位。
output通过使用$denseRank. 将denseRankQuantityForState字段设置为quantity的密集排名。
以下是一个输出示例:
具有相同
quantity和state的文档具有相同的排名,排名之间没有间隙。这与$rank不同,其排名之间有间隙(例如,请参阅 包含重复值、空值或缺失数据的排名分区)。在
CA分区中,具有nullquantity的文档然后是缺少quantity的文档在输出中排名最低。这种排序是 BSON 比较顺序 的结果,在该示例中,数字值之后对null和缺失值进行排序。
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "denseRankQuantityForState" : 1 } { "_id" : 9, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"), "state" : "CA", "price" : 39, "quantity" : 162, "denseRankQuantityForState" : 1 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "denseRankQuantityForState" : 2 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "denseRankQuantityForState" : 3 } { "_id" : 10, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"), "state" : "CA", "price" : 39, "quantity" : null, "denseRankQuantityForState" : 4 } { "_id" : 11, "type" : "strawberry", "orderDate" : ISODate("2020-05-11T16:09:01Z"), "state" : "CA", "price" : 39, "denseRankQuantityForState" : 5 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "denseRankQuantityForState" : 1 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "denseRankQuantityForState" : 2 } { "_id" : 6, "type" : "strawberry", "orderDate" : ISODate("2020-01-08T06:12:03Z"), "state" : "WA", "price" : 41, "quantity" : 134, "denseRankQuantityForState" : 2 } { "_id" : 7, "type" : "strawberry", "orderDate" : ISODate("2020-01-01T06:12:03Z"), "state" : "WA", "price" : 34, "quantity" : 134, "denseRankQuantityForState" : 2 } { "_id" : 8, "type" : "strawberry", "orderDate" : ISODate("2020-01-02T06:12:03Z"), "state" : "WA", "price" : 40, "quantity" : 134, "denseRankQuantityForState" : 2 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "denseRankQuantityForState" : 3 }